Monday, June 18, 2012

latex Symbol, math


ref:http://web.ift.uib.no/Teori/KURS/WRK/TeX/symALL.html

http://www.access2science.com/latex/Characters.html

LaTeX Math Symbols

Prepared by L. Kocbach, on the basis of this document (origin: David Carlisle, Manchester University)

File A.tex contains all necessary code
This file is prepared by running
latex A.tex
and cutting the pictures out of the resulting preview. Relevant parts of the latex code are reproduced under each of the pictures.
Some of the symbols have an explanatory text. This text is found in the latex code, mostly stating that they are parts of some spacial setup and cannot be used in standard LaTeX. Each of the figures also has a link to itself.

Greek Letters


t1.gif
t1.gif
 \alpha               \theta               o                  \tau          
 \beta                \vartheta           \pi                 \upsilon      
 \gamma               \gamma              \varpi              \phi          
 \delta               \kappa              \rho                \varphi       
 \epsilon             \lambda             \varrho             \chi          
 \varepsilon          \mu                 \sigma              \psi          
 \zeta                \nu                 \varsigma           \omega        
 \eta                 \xi                                           
                                                                 
 \Gamma               \Lambda             \Sigma              \Psi          
 \Delta               \Xi                 \Upsilon            \Omega        
 \Theta               \Pi                 \Phi




Binary Operation Symbols


t2.gif
t2.gif
 \pm                  \cap                \diamond                    \oplus      
 \mp                  \cup                \bigtriangleup              \ominus     
 \times               \uplus              \bigtriangledown            \otimes     
 \div                 \sqcap              \triangleleft               \oslash     
 \ast                 \sqcup              \triangleright              \odot       
 \star                \vee                \lhd$^b$                    \bigcirc    
 \circ                \wedge              \rhd$^b$                    \dagger     
 \bullet              \setminus           \unlhd$^b$                  \ddagger    
 \cdot                \wr                 \unrhd$^b$                  \amalg      
 +                    -

$^b$ Not predefined in a format based on {\tt basefont.tex}.
     Use one of the style options 
     {\tt oldlfont}, {\tt newlfont}, {\tt amsfonts} or {\tt amssymb}.




Relation Symbols


t3.gif
t3.gif
 \leq                 \geq                \equiv              \models       
 \prec                \succ               \sim                \perp         
 \preceq              \succeq             \simeq              \mid          
 \ll                  \gg                 \asymp              \parallel     
 \subset              \supset             \approx             \bowtie       
 \subseteq            \supseteq           \cong               \Join$^b$     
 \sqsubset$^b$        \sqsupset$^b$       \neq                \smile        
 \sqsubseteq          \sqsupseteq         \doteq              \frown        
 \in                  \ni                 \propto             =             
 \vdash               \dashv              <                   >             
 :

$^b$ Not predefined in a format based on {\tt basefont.tex}.
     Use one of the style options 
     {\tt oldlfont}, {\tt newlfont}, {\tt amsfonts} or {\tt amssymb}.



Punctuation Symbols


t4.gif
t4.gif
 ,            ;           \colon              \ldotp              \cdotp


Arrow Symbols

t5.gif
t5.gif
 \leftarrow                   \longleftarrow              \uparrow      
 \Leftarrow                   \Longleftarrow              \Uparrow      
 \rightarrow                  \longrightarrow             \downarrow    
 \Rightarrow                  \Longrightarrow             \Downarrow    
 \leftrightarrow              \longleftrightarrow         \updownarrow  
 \Leftrightarrow              \Longleftrightarrow         \Updownarrow  
 \mapsto                      \longmapsto                 \nearrow      
 \hookleftarrow               \hookrightarrow             \searrow      
 \leftharpoonup               \rightharpoonup             \swarrow      
 \leftharpoondown             \rightharpoondown           \nwarrow      
 \rightleftharpoons           \leadsto$^b$

$^b$ Not predefined in a format based on {\tt basefont.tex}.
     Use one of the style options 
     {\tt oldlfont}, {\tt newlfont}, {\tt amsfonts} or {\tt amssymb}.





Miscellaneous Symbols

t6.gif
t6.gif
 \ldots               \cdots              \vdots              \ddots        
 \aleph               \prime              \forall             \infty        
 \hbar                \emptyset           \exists             \Box$^b$      
 \imath               \nabla              \neg                \Diamond$^b$  
 \jmath               \surd               \flat               \triangle     
 \ell                 \top                \natural            \clubsuit     
 \wp                  \bot                \sharp              \diamondsuit  
 \Re                  \|                  \backslash          \heartsuit    
 \Im                  \angle              \partial            \spadesuit    
 \mho$^b$             .                   |

$^b$ Not predefined in a format based on {\tt basefont.tex}.
     Use one of the style options 
     {\tt oldlfont}, {\tt newlfont}, {\tt amsfonts} or {\tt amssymb}.


Variable-sized Symbols

t7.gif
t7.gif
 \sum                 \bigcap             \bigodot      
 \prod                \bigcup             \bigotimes    
 \coprod              \bigsqcup           \bigoplus     
 \int                 \bigvee             \biguplus     
 \oint                \bigwedge


Log-like Symbols

t8.gif
t8.gif
 \arccos     \cos       \csc      \exp      \ker         \limsup      \min      \sinh  
 \arcsin     \cosh      \deg      \gcd      \lg          \ln       \Pr       \sup   
 \arctan     \cot       \det      \hom      \lim         \log       \sec      \tan   
 \arg        \coth      \dim      \inf      \liminf      \max       \sin      \tanh


Delimiters

t9.gif
t9.gif
 (                    )                   \uparrow            \Uparrow      
 [                    ]                   \downarrow          \Downarrow    
 \{                   \}                  \updownarrow        \Updownarrow  
 \lfloor              \rfloor             \lceil              \rceil        
 \langle              \rangle             /                   \backslash    
 |                    \|

Large Delimiters

t10.gif
t10.gif
  \rmoustache        \lmoustache         \rgroup            \lgroup 
  \arrowvert         \Arrowvert          \bracevert

Math mode accents


t11.gif
t11.gif
 \hat{a}            \acute{a}         \bar{a}           \dot{a}           \breve{a} 
 \check{a}          \grave{a}         \vec{a}           \ddot{a}          \tilde{a} 

Some other constructions


t12.gif
t12.gif
 \widetilde{abc}                     \widehat{abc}
 \overleftarrow{abc}                 \overrightarrow{abc}
 \overline{abc}                      \underline{abc}
 \overbrace{abc}                     \underbrace{abc}
 \sqrt{abc}                          \sqrt[n]{abc}
 $f'$                                \frac{abc}{xyz}


 
Navigation Links

Latex Characters

Updated March 28, 2011

Lower Case Greek Letters

Latex symbol Symbol Letter
\alpha α alpha
\beta β beta
\gamma γ gamma
\digamm digamma
\delta δ delta
\epsilon ε epsilon
\varepsilon ϵ variant epsilon
\zeta ζ zeta
\eta η eta
\theta θ theta
\vartheta ϑ variant theta
\iota ι iota
\kappa κ kappa
\varkappa κ variant kappa
\lambda λ lambda
\mu μ mu
\nu ν nu
\xi ξ xi
\pi π pi
\varpi ϖ variant pi
\rho ρ rho
\varrho ϱ variant rho
\sigma σ sigma
\varsigma ς variant sigma
\tau τ tau
\upsilon υ upsilon
\phi φ phi
\varphi ϕ variant phi
\chi χ chi
\psi ψ psi
\omega ω omega

Capital Greek Letters

Latex symbol Symbol Letter
\Gamma Γ capital Gamma
\varGamma Γ Variant capital Gamma
\Delta Δ capital Delta
\varDelta Δ variant capital Delta
\Theta Θ capital Theta
\varTheta Θ variant capital Theta
\Lambda Λ Capital Lambda
\varLambda Λ variant capital Lambda
\Xi Ξ capital Xi
\varXi Ξ variant capital Xi
\Pi Π capital Pi
\ varPi Π variant capital Pi
\Sigma Σ capital Sigma
\varSigma Σ variant capital Sigma
\Upsilon Υ capital Upsilon
\varUpsilon Υ variant capital Upsilon
\Phi Φ capital Phi
\varPhi Φ variant capital Phi
\Psi Ψ capital Psi
\varPsi Ψ variant capital Psi
\Omega Ω capital Omega
\varOmega Ω variant capital Omega

Hebrew Letters

Latex symbol Symbol Letter
\aleph aleph
\beth beth
\daleth daleth
\gimel ג gimel

Miscellaneous symbols

Latex symbol Symbol Character
\hbar h-bar, Planck's constant over 2 pi
\ell Script small "l"
\imath ı Lower case "i", used by scientists to indicate imaginary number
\jmath j Lower case j, used by engineers to indicate imaginary number
\wp Script capital P
\Re Real number indicator
\Im Imaginary number indicator
\partial Partial differential symbol
\infty Infinity
\prime Prime
\emptyset Empty Set
\backslash \ Backslash
\forall For All
\exists There Exists
\smallint Small Integral, not represented specifically in unicode
\triangle Triangle
\surd square root symbol
\Vert | vertical bar
\parallel Parallel
\top Top symbol
\bot Bottom symbol
\dag Daggar
\ddag Double Daggar
\flat Music Flat
\natural Music Natural
\sharp Music Sharp
\angle Angle
\clubsuit Club card
\diamondsuit Diamond card
\heartsuit Heart card
\spadesuit Spade Card
\neg ¬ Logical NOT
\Diamond Diamond operator
\mho Inverse Ohm
\hslash h-slash, Planck Constnt over 2 pi
\complement Complement
\backprime Reverse Prime
\vartriangle Variant Triangle
\varnothing Empty Set
\diagup Division slash symbol
\diagdown Set minus
\blacktriangle Black Triangle
\blacktriangledown Black Down-Pointing Triangle
\triangledown Triangle Pointing Down
\Game Turned Capital Sans Serif G
\square Square
\blacksquare Black Square
\lozenge Lozenge
\blacklozenge Black Lozenge
\measuredangle Measured Angle
\sphericalangle Spherical Angle
\circledS Circled Capital "S"
\bigstar Big black star
\Finv Turned Capital F
\eth ð Eth letter (lower case d bar)
\nexists There Does Not Exist
Return to Table of Contents
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License
Valid XHTML 1.0 Strict






LaTeX:Math

LaTeX
About - LaTeX on AoPS - Downloads - Basics - Math - Examples - Pictures - Layout - Symbols - Commands - Packages - Help
This article will detail how to work with math mode in LaTeX and how to display equations, formulas, and mathematical expressions in general.

Contents

[hide]

Math Mode

LaTeX uses a special math mode to display mathematics. To place something written in TeX in math mode, use $ signs to enclose the math you want to display. For example, open a new source file in TeXnicCenter and type or copy/paste the following:


\documentclass{article}
\begin{document}
The solution to $\sqrt{x} = 5$ is $x=25$.
\end{document} 
Save the document (press Ctrl-S or click File, then Save) as 'mymath' (don't include the quote marks in the name) in a folder of your choice. The file will appear in your folder as 'mymath.tex.'
Compile the document just as you compiled your first document. When you view the output file, you should see
Mathsamp1.gif
If you remove the $ symbols from your source file then try to compile, you should get 'Missing $ inserted' error messages in the Output window of TeXnicCenter (try it and see - you may have to scroll up in the Output window to see the errors).
Nearly all mathematical items, such as variables, expressions, equations, etc., should be written in math mode. In fact, most math will generate errors if you don't remember to put it in math mode.

Display Math

As we saw above, when using $math stuff here$ to typeset math, the resulting math expression appears right in the text at the location of the $...$. Sometimes we want to break some of the math out of the text and give it its own special line. To do so, we use \[math stuff here\] or $$math stuff here$$ (the former is usually preferred now) to put the math text in display math mode:
\documentclass{article}
\begin{document}
The solution to \[\sqrt{x} = 5\] is \[x=25.\]
\end{document} 
After you compile this and view it, you should see:
Mathsamp2.gif
Notice that the equations are on their own lines and are centered. As a matter of style, usually we put this display math on their own lines in the source file, like this:
\documentclass{article}
\begin{document}
The solution to
\[
\sqrt{x} = 5
\]
is
\[
x=25.
\]
\end{document} 
We can also use
\begin{equation} math \end{equation}
to display mathematics. This approach also creates a label, which we can refer to later if we like. Make sure you read our notes about referencing before using these labels for references - it's much better to use \label and \ref than to refer to the equations by number in your source file.
\documentclass{article}
\begin{document}
\begin{equation}
2+2=4
\end{equation} 
\end{document} 
Notice the (1) out to the right when you compile the above. Once again, rather than typing (1) in your source file to refer to this equation, use LaTeX referencing commands.
Generally, you'll only use \begin{equation} when you need the label.

Display Style (\displaystyle)

Sometimes we have complicated expressions that we don't want to put on their own lines, but that doesn't render well with $...$ mode. For example:
\documentclass{article}
\begin{document}
Evaluate the sum $\sum_{i=0}^n i^3$.
\end{document} 
gives us
Mathsamp3.gif
That summation symbol is a little ugly. We can make it prettier by using \displaystyle:
\documentclass{article}
\begin{document}
Evaluate the sum $\displaystyle\sum\limits_{i=0}^n i^3$.
\end{document} 
This gives us:
Mathsamp4.gif
Notice that the summation symbol looks much nicer now - adding the \displaystyle at the beginning of your math (inside the $...$) will often make complicated math render more nicely. Note that it is not necessary to use \displaystyle when using display mode (\[ and \] or \begin{equation} and \end{equation}).

Aligning Equations (align)

A pair of very useful tools for displaying equations well are the "align" and "align*" environments. They allow you to neatly align a string of equations:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
&= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align*}
\end{document} 
Compiling this should give: \begin{align*}2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\&= 2x^2 + 3x^2 - 9x + 6\\&= 5x^2 - 9x + 6\end{align*}
There are a few things to notice here. First, the align command requires that you use the package amsmath (and there's no reason to not use this package). Second, the * after align prevents line numbers from popping up after each line - try removing both of the *s from the source file and compile to see equation numbers. Next, notice that each line is of the form
Math stuff & more math stuff \\
The & symbols separate the columns. There must be two columns (i.e. one & symbol). The \\ tells LaTeX that you are finished with this line and are on to the next. Notice that there's no \\ on the last line; the \end{align*} tells LaTeX that you're finished. As you see above, you can leave some columns blank. As a style issue, notice that we start a new line in our source file after each \\. We could run all the lines together, but that makes editing very difficult.
Typically, we use relational symbols like =, >, or < immediately following the &; align ensures that these symbols are arranged into a vertical column as you see above. That's why we like align.
Finally, notice that there are no $ symbols, $$ ... $$, or \[ ... \], yet everything is rendered in math mode. This happens because align automatically puts everything in math mode - you don't need $s or \[ ... \] tags.
Finally, note that in an align environment, you can use the \nonumber command if you want only some lines to be numbered. For example,
\documentclass{article}
\usepackage{amsmath}
\begin{document}
\begin{align}
2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\
\nonumber &= 2x^2 + 3x^2 - 9x + 6\\
&= 5x^2 - 9x + 6
\end{align}
\end{document} 
compiles to this: \begin{align}2x^2 + 3(x-1)(x-2) & = 2x^2 + 3(x^2-3x+2)\\\nonumber &= 2x^2 + 3x^2 - 9x + 6\\&= 5x^2 - 9x + 6\end{a...

Additional Packages

The basic LaTeX program does not include all the math you'll want to use. In order to access all the math functions and symbols we will introduce in the guide pages, you'll have to include a number of packages. We include these packages by using the \usepackage command between the \documentclass line and the \begin{document} line, such as:
\documentclass{article}
\usepackage{amsmath}
\begin{document}
We can write more than just $x$ now.
Now we can write things like $\binom{5}{3}$.
\end{document}
The package used above is part of the basic MiKTeX installation, so you don't have to download anything new to include them. Later, you may want to read more about how to include more packages and how you can create packages of your own.
Finally, one last point of style - notice in that last example that we put the x in math mode by writing $x$ instead of just x. Try compiling with and without the x in math mode and you'll see why. Always put your math in math mode!
If you find you want to do some math typesetting that you can't find on this page, or among our discussions of symbols or commands, try reading the user's guide for the amsmath package, which contains some of the really fancy applications of the ams packages.

See Also


 ref:http://www.artofproblemsolving.com/Wiki/index.php/LaTeX:Math
 
The Student Room

LaTex

TSR Wiki > Study Help > Subjects and Revision > Subject Guides > Mathematics > LaTeX

LaTeX (pronounced Latec - the x is actually a chi symbol) is an electronic typesetter used mainly for technical or scientific documents but it can be used for almost any form of publishing.
LaTeX is not a word processor! Instead, LaTeX encourages authors not to worry too much about the appearance of their documents but to concentrate on getting the right content. For example, consider this document:
The purpose is not primarily aesthetics as with a word processor, but correct content.
LaTeX contains features for:
   * Typesetting
   * Control over large documents containing sectioning, cross-references,
 tables and figures.
   * Typesetting of complex mathematical formulas.
   * Advanced typesetting of mathematics with AMS-LaTeX.
   * Automatic generation of bibliographies and indexes.
   * Multi-lingual typesetting.
   * Inclusion of artwork, and process or spot colour.
   * Using PostScript or Metafont fonts.
LaTeX is built in to TSR. It helps enormously getting people to help you out if you format your mathematical queries using this method. Below are some basic commands to get you started:

Contents

[hide]

Using LaTeX on TSR:

TSR currently has two LaTeX packages installed, one called TeXLive and an older one called MimeTeX. In terms of functionality and typographical quality the former is better, and this guide will assume you use TeXLive.
To use LaTeX on the TSR forums, simply enter the LaTeX code into [latex][/latex] tags.
e.g. [latex]x = 5[/latex] gives x = 5
Note Virtually all, if not all, the LaTeX commands on this page also work using the tags [tex] and [/tex] (which saves you quite a bit of typing if you're doing lots of it!) TeX is just the earlier version of LaTeX

Multiplication and division

If you need to use these symbols, use \times and \div respectively.
e.g. [latex]3 \times 5 = 15[/latex] gives 3 \times 5 = 15, while [tex]4 \div 2 = 2[/tex] gives 4 \div 2 = 2

Plus or minus

[latex]\pm[/latex] gives \pm
[latex]\mp[/latex] gives \mp

Indices

[latex]x^a[/latex] gives x^a
If the exponent is more than one character long, then you have to use curly brackets (i.e. { and } ) This is the case throughout LaTeX.
e.g. [latex]x^{10}[/latex] gives x^{10}
For square roots, you use the \sqrt command.
e.g. [latex]\sqrt 2[/latex] gives \sqrt 2
e.g. [latex]\sqrt {b^2-4ac}[/latex] gives \sqrt {b^2-4ac}
If you want to take the n-th root, use the \sqrt[n] command.
e.g. [latex]\sqrt[3]{1+x^2}[/latex] gives \sqrt[3]{1+x^2}

Equals sign and inequalities

To get an equals sign, you simply use the ordinary = sign.
e.g. [latex]2^4=16[/latex] gives 2^4=16
For 'not equal to', use \not=
e.g. [latex]2^4\not=2[/latex] gives 2^4\not=2
For less than signs, we use <, and for greater than signs, we use >
e.g. [latex]2^4>15[/latex] gives 2^4>15
For 'less than or equal to' signs, we use \leq, and for 'greater than or equal to' signs we use \geq
e.g. [latex]5x+3 \geq 8[/latex] gives 5x+3 \geq 8
As with the equals sign, the symbol for 'not less than or equal to', 'not greater than', etc. is just \not followed by the symbol (i.e. >, <, \leq, \geq).
e.g. [latex]5x+3 \not\geq 8[/latex] gives 5x+3 \not\geq 8
For 'equivalent to' signs, we use \equiv
e.g. [latex]1+ \cot^2 \equiv \mathrm{cosec}^2[/latex] gives 1+ \cot^2 \theta \equiv \mathrm{cosec}^2 \theta

Fractions

We use \frac{numerator}{denominator}.
e.g. [latex]\frac{1}{2}[/latex] gives \frac{1}{2}
e.g.2 [latex]x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/latex] gives x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}
For fractions which aren't squashed onto one line, use \dfrac{numerator}{denominator}.
e.g. [latex]x = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}[/latex] gives x = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}

Brackets

To get brackets in LaTeX you simply use the parentheses you're used to using when typing Maths without LaTeX.
e.g. [latex](x+1)^2[/latex] gives (x+1)^2
If you've got a huge expression with multiple brackets or roots, fractions, etc., you can get larger brackets, using the \left( and \right) commands.
e.g. [latex]f(x) = 3x^2\left(1+\frac{2x+1}{x^2-2} \right)[/latex] gives f(x) = 3x^2\left(1+\frac{2x+1}{x^2-2} \right) (compare with [latex]f(x) = 3x^2(1+\frac{2x+1}{x^2-2})[/latex] which gives f(x) = 3x^2(1+\frac{2x+1}{x^2-2})
Square brackets and curly brackets can also be used. For example, [latex]\displaystyle \int_1^2 \{x^2 + 1\} dx = \left[ \frac{x^3}{3} + x \right]_1^2[/latex] gives \displaystyle \int_1^2 \{x^2 + 1\} dx = \left[ \frac{x^3}{3} + x \right]_1^2

Normal text

When writing within TeX tags, it is assumed that any letters denote variables, and hence are italicised. If you want the letters to be written normally (for example, if you are quoting units), use the \mathrm{} tag. The \text{} tag can also be used to perform this function on TSR.
e.g. [latex]\mathrm{hello}[/latex] gives \mathrm{hello} (compare with [latex]hello[/latex] which gives hello)
For spaces, use "\ ".
e.g. [latex]\mathrm{With\ spaces\ without spaces}[/latex] gives \mathrm{With\ spaces\ without spaces}
and [latex]v=1.2\text{\ m/s}[/latex] gives v=1.2\text{\ m/s}

Subscripts and superscripts

Superscripts are exactly the same as indices - we again use the ^ command.
e.g. [latex]\mathrm{Cl}^-[/latex] gives \mathrm{Cl}^- (Note that you could also use the [sup] [/sup] tags instead though.)
For subscripts, we use the _ command.
e.g. [latex]x_1+x_2+x_3 = 5[/latex] gives x_1+x_2+x_3 = 5

Sigma notation

To write sums, we use the \sum command.
e.g. [latex]\sum_{i=1}^n i^2 = \frac{1}{6}n(n+1)(2n+1) [/latex] gives \sum_{i=1}^n i^2 = \frac{1}{6}n(n+1)(2n+1)
To make the first and last term appear above and below instead of to the side, use \displaystyle.
e.g. [latex]\displaystyle\sum_{i=1}^n i^2 = \frac{1}{6}n(n+1)(2n+1) [/latex] gives \displaystyle\sum_{i=1}^n i^2 = \frac{1}{6}n(n+1)(2n+1)
To write the mean of x, x-bar, use the \bar{x}. E.g. \bar{x} = \frac{1}{n}\displaystyle\sum_{i=1}^n x_i

Differentiation

Again, we use \frac{}{} to write dy/dx.
e.g. [latex]\frac{d}{dx} x^2 = 2x[/latex] gives \frac{d}{dx} x^2 = 2x
For f'(x), simply write it out normally within LaTeX tags.
e.g. [latex]f'(x)[/latex] gives f'(x)
For partial derivatives, use \partial instead of d.
e.g. [latex]\displaystyle \frac{\partial}{\partial x} x^2y = 2xy[/latex] gives \displaystyle \frac{\partial}{\partial x} x^2y = 2xy

Integration

For the integral sign, use the \int command.
e.g. [latex]\int 2x\ dx = x^2 + C[/latex] gives \int 2x\ dx = x^2 + C
For definite integrals, use the commands for subscripts and superscripts.
e.g. [latex]\int^2_0 2x\ dx = 4[/latex] gives \int^2_0 2x\ dx = 4
Again, like with sums, the \displaystyle command makes integrals look nicer:
e.g. [latex]\displaystyle\int^2_0 2x\ dx = 4[/latex] gives \displaystyle\int^2_0 2x\ dx = 4

Modulus sign

Use | for the modulus sign.
e.g. [latex]\sqrt{x^2} = |x|[/latex] gives \sqrt{x^2} = |x|
or \lvert and \rvert (in case you don't have a | key on your keyboard)

Factorial

Use the exclamation mark like normal.
e.g. [latex]4! = 24[/latex] gives 4! = 24

n choose r

[latex]^n\mathrm{C}_r[/latex] gives ^n\mathrm{C}_r
Or, you can use the \binom command:
[latex]\displaystyle \binom{n}{r}[/latex] gives \displaystyle \binom{n}{r}
You could also, if you wanted, write it as a vector(see below).

Greek Letters

Write \x where x is the written form of the Greek letter (i.e. alpha, beta, gamma, ... , omega).
e.g. [latex]\pi[/latex] gives \pi
e.g. [latex]\theta[/latex] gives \theta
If you want the uppercase Greek letter, write the first letter as a capital.
e.g. [latex]\Delta[/latex] gives \Delta
Some Greek letters look identical to their Roman equivalents, and so are not provided; e.g. for lowercase omicron, simply write o.

Infinity

To insert the infinity symbol, use \infty.
e.g [latex]\displaystyle\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}[/latex] gives \displaystyle\sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}

Trigonometry

[latex]\cos \theta[/latex] gives \cos \theta
[latex]\sin \theta[/latex] gives \sin \theta
[latex]\tan \theta[/latex] gives \tan \theta
[latex]\sec \theta[/latex] gives \sec \theta
[latex]\mathrm{cosec} \theta[/latex] gives \mathrm{cosec} \theta
Alternatively, [latex]\csc \theta[/latex] gives \csc \theta
[latex]\cot \theta[/latex] gives \cot \theta
For the trig functions exponentiated, use ^ after the trig function and before the \theta (or whatever you're using).
e.g. [latex]\sin^2 \theta + \cos^2 \theta=1[/latex] gives \sin^2 \theta + \cos^2 \theta=1
To write 'degrees', you could use the \circ command.
e.g. [latex]\sin 30^{\circ} = \frac{1}{2}[/latex] gives \sin 30^{\circ} = \frac{1}{2}

Logarithms

Use some of the previous commands.
e.g. [latex]\ln x^k = k \ln x[/latex] gives \ln x^k = k \ln x
and [latex]\log_a x^k = k \log_a x[/latex] gives \log_a x^k = k \log_a x

Dots

[latex]x_1+x_2+\cdots[/latex] gives x_1+x_2+\cdots (i.e. central dots)
[latex]x_1+x_2+\ldots[/latex] gives x_1+x_2+\ldots(i.e. dots at the bottom)
[latex]\dot{x}[/latex] gives \dot{x} (i.e. dot above x)
[latex]\ddot{x}[/latex] gives \ddot{x} (i.e. two dots above x)
[latex]\cdot[/latex] gives \cdot
[latex]\bullet[/latex] gives \bullet

Matrices and Vectors

For a bold letter, you could use normal text and make it bold (e.g. [b]i[/b] gives i), or if you wanted to use LaTeX, use the \mathbf{} command.
e.g. [latex]\mathbf{i}[/latex] gives \mathbf{i}
The \vec{} command can also be useful.
e.g. [latex]\vec{AB}[/latex] gives \vec{AB}
To write a vector or a matrix, you could use either of the pairs
  • \begin{pmatrix} \end{pmatrix}
  • \begin{bmatrix} \end{bmatrix}
  • \begin{Bmatrix} \end{Bmatrix}
  • \begin{vmatrix} \end{vmatrix}
  • \begin{Vmatrix} \end{Vmatrix}
  • \begin{matrix} \end{matrix}
which enclose the matrix/vector in ( ), [ ], { }, | |, || || and nothing, respectively. Between these \begin{} and \end{} commands, enter the coefficients of the matrix/vector row by row, separating coefficients on the same row with & and separating rows by \\.
Examples:
[latex]\begin{pmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{pmatrix}[/latex] gives
\begin{pmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{pmatrix}
[latex]\begin{bmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{bmatrix}[/latex] gives
\begin{bmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{bmatrix}
[latex]\begin{Bmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{Bmatrix}[/latex] gives
\begin{Bmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{Bmatrix}
[latex]\begin{vmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{vmatrix}[/latex] gives
\begin{vmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{vmatrix}
[latex]\begin{Vmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{Vmatrix}[/latex] gives
\begin{Vmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{Vmatrix}
and
[latex]\begin{matrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{matrix}[/latex] gives
\begin{matrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{matrix}
For vectors, simply write a matrix with only one column:
[latex]\begin{pmatrix} x \\ y \\ z \end{pmatrix}[/latex] gives
\begin{pmatrix} x \\ y \\ z \end{pmatrix}



Arrays

Sometimes, it could be useful to lay out what you write nicely in a table. For many cases, the \begin{matrix} \end{matrix} commands will suffice for this, but a little more control is offered by the \begin{array} \end{array} commands.
When using this, you need to decide beforehand how many columns you want to have, and include a string of letters, one for each column, enclosed in {} directly after the \begin{array} command. The letters indicate what alignment you want of the entries in that column, l for left, c for centre, and r for right.
e.g.
[latex]\begin{array}{rlc} n & n^2 & n^3 \\ 3 & 9 & 27 \\ 4 & 16 & 64 \\ 11 & 121 & 1331 \end{array}[latex]
gives
\begin{array}{rlc}
n & n^2 & n^3 \\
3 & 9 & 27  \\
4 & 16 & 64 \\
11 & 121 & 1331  
\end{array}
You can have horizontal and vertical lines in your table. For a horizontal line, use the \hline command , and for a vertical, put a | in the list of column alignments.
e.g.
[latex]\begin{array}{r|lc} n & n^2 & n^3 \\ \hline 3 & 9 & 27 \\ 4 & 16 & 64 \\ 11 & 121 & 1331 \end{array}[latex]
gives
\begin{array}{r|lc}
n & n^2 & n^3 \\
\hline
3 & 9 & 27  \\
4 & 16 & 64 \\
11 & 121 & 1331  
\end{array}

Arrows

e.g. [latex]\Rightarrow[/latex] gives \Rightarrow
e.g. [latex]\rightarrow[/latex] gives \rightarrow
e.g. [latex]\Longrightarrow[/latex] gives \Longrightarrow
e.g. [latex]\longrightarrow[/latex] gives \longrightarrow
e.g. [latex]\mapsto[/latex] gives \mapsto
Arrows can point left by replacing "right" with "left", or they can point both ways by replacing "right" with "leftright".
e.g. [latex]\longleftarrow[/latex] gives \longleftarrow
e.g. [latex]\Leftrightarrow[/latex] gives \Leftrightarrow

Logic Symbols

[latex]\forall[/latex] gives \forall
[latex]\land[/latex] gives \land
[latex]\lor[/latex] gives \lor
[latex]\exists[/latex] gives \exists



Other

[latex]\lim_{x\to 0}[/latex] gives \lim_{x\to 0}
[latex]\displaystyle\lim_{x\to 0}[/latex] gives \displaystyle\lim_{x\to 0}
[latex] \Re [/latex] gives  \Re
[latex] \Im [/latex] gives  \Im

Sets

[latex]\cup[/latex] gives \cup eg. \mathrm{P}(A \cup B)
[latex]\cap[/latex] gives \cap eg. \mathrm{P}(A \cap B)
[latex]\subset[/latex] gives \subset
[latex]\subseteq[/latex] gives \subseteq
[latex]\in[/latex] gives \in
[latex]\not\in [/latex] gives \not\in
[latex]\mathbb{P}[/latex] gives \mathbb{P}
[latex]\mathbb{N}[/latex] gives \mathbb{N}
[latex]\mathbb{Z}[/latex] gives \mathbb{Z}
[latex]\mathbb{I}[/latex] gives \mathbb{I}
[latex]\mathbb{Q}[/latex] gives \mathbb{Q}
[latex]\mathbb{R}[/latex] gives \mathbb{R}
[latex]\mathbb{C}[/latex] gives \mathbb{C}
[latex]\forall[/latex] gives \forall

Accents

[latex]\bar{x}[/latex] gives \bar{x}
[latex]\hat{x}[/latex] gives \hat{x}
[latex]\dot{x}[/latex] gives \dot{x}
[latex]\ddot{x}[/latex] gives \ddot{x}
[latex]\vec{x}[/latex] gives \vec{x}
Discussions  
Article Updates Edit


http://www.thestudentroom.co.uk/wiki/LaTex